Tag Archives: NASA

The Orionids Meteor Shower 2017

THE ORIONID meteor shower promises to dazzle stargazers with a spectacular display of shooting stars TONIGHT. But what is the best time too watch the meteor shower?

When its the Orionids meteor shower? 

If you can’t view it, either it being cloudy or heavey lit area, Slooh will be Live streaming the event from tonight. Join Paul Cox, Dr. Paige Godfrey, and Bob Berman for a decidedly casual and far-ranging chat as as we train our telescopes on the Orionids. SLOOH Live Event of the Orionid Meteor Shower

The Orionids light up the night sky every year towards the end of October in “one of the most beautiful showers of the year”, according to Nasa.

The meteor shower will peak in the early of hours of Saturday (October 20) and once again in the early hours of Sunday (October 22). Sporadic meteors have already been dashing across the night sky from October 15 and should remain visible until November.

During the peak, stargazers can expect anywhere up to 50 meteors per hour, though this year Nasa believes that the numbers may not be as spectacular.

Nasa’s Jane Houston Jones said: “The Orionids peak on October 20, a dark, moonless night. Look near Orion’s club in the hours before dawn and you may see up to 10 to 15 meteors per hour. “Use binoculars to look for bright asteroid 7 Iris in the constellation Aries. Newbies to astronomy should be able to spot this magnitude 6.9 asteroids even from the city.”

What is the best time to view the Orionids meteor shower?

The peak of the Orionids will be visible anywhere on Earth in the early morning hours of tonight and tomorrow night, usually after midnight and just before dawn.

The best time for skywatchers to head outside is usually around 2am when the shower is at its most intense.

 

Orionids emerging in the Orion constellation
GETTY: Orionids emerge near to the Orion constellation in the sky

Orionids 2017: Shooting star dashing in the sky
GETTY:  Orionids 2017: NASA expects 15-20 meteors an hour during the shower’s peak
Star gazers will be aided this year by the lack of moonlight which should keep the skies clear of any hindering light pollution.

But Storm Brian will make the sky overcast tonight much of the UK as the weather bomb unleashes strong winds and rainstorms.

A Met Office spokesman said: “There’s quite a lot of cloud around this evening and overnight. The best chance of seeing them will be in the early hours before dawn.”  He said that the clearest skies will be from 3am in the eastern part of England across East Anglia, the South East, Lincolnshire and the Midlands.”

To get the best views, stay away from any sources of light pollution and give your eyes some time to adjust to the dark of space.

Where will the Orionid meteor shower appear? 

The Orionids derive their name from there point of origin next to the Orion constellation, which ascends in the east.

But the shower’s radiant point is mostly irrelevant because the meteors will shoot out in all sorts of directions, and usually remain unseen until about 30 degrees from the radiant.

However, if you spot a streaking meteor, you should be able to trace its path back to its origin next to Orion’s club.

What are the Orionids?

The spectacular shooting stars are remnants of the prolific Halley’s Comet, which visits Earth every 74 to 79 years.

When the comet passes through the solar system, chunks (Debris) of ice and rock break off from the comet thanks to the sun, and trail in the comet’s path. The first recorded reports of the shower date back to 1839, when it was spotted in America.

The Orionids are incredibly fast meteors and crash into Earth’s atmosphere at a speed of 66 km/s. Many of the falling stars leave ionised trails of glowing gas in their path.

 

Photo Of THe Day from NASA

Advertisements

Orionid Meteors – Astronomy Photo of the Day

See Explanation.  Clicking on the picture will download  the highest resolution version available.

Orionid Meteors Over Turkey 
Credit & Copyright: Tunc TezelExplanation: Meteors have been flowing out from the constellation Orion. This was expected, as mid-October is the time of year for the Orionids Meteor Shower. Pictured above, over a dozen meteors were caught in successively added exposures over three hours taken this past weekend from a town near BursaTurkey. The above image shows brilliant multiple meteor streaks that can all be connected to a single point in the sky just above the belt of Orion, called the radiant. The Orionids meteors started as sand sized bits expelled from Comet Halley during one of its trips to the inner Solar System. Comet Halley is actually responsible for two known meteor showers, the other known as the Eta Aquarids and visible every May. Next month, the Leonids Meteor Shower from Comet Tempel-Tuttle might show an even more impressive shower from some locations.

 

Source:  https://apod.nasa.gov/apod/ap061023.html

Astronomy Picture of the Day – Dark Molecular Cloud Barnard 68

See Explanation.  Clicking on the picture will download
 the highest resolution version available.Dark Molecular Cloud Barnard 68 
Image Credit: FORS Team8.2-meter VLT AntuESOExplanation: Where did all the stars go? What used to be considered a hole in the sky is now known to astronomers as a dark molecular cloud. Here, a high concentration of dust and molecular gas absorb practically all the visible light emitted from background stars. The eerily dark surroundings help make the interiors of molecular clouds some of the coldest and most isolated places in the universe. One of the most notable of these dark absorption nebulae is a cloud toward the constellation Ophiuchus known as Barnard 68pictured here. That no stars are visible in the center indicates that Barnard 68 is relatively nearby, with measurements placing it about 500 light-years away and half a light-year across. It is not known exactly how molecular clouds like Barnard 68 form, but it is known that these clouds are themselves likely places for new stars to form. In fact, Barnard 68 itself has been found likely to collapse and form a new star system. It is possible to look right through the cloud in infrared light.

 

From: https://apod.nasa.gov/apod/ap171008.html

Astronomy Picture of the Day – Eclipsosaurus Rex

See Explanation.  Clicking on the picture will download
 the highest resolution version available.

Eclipsosaurus Rex 
Image Credit & CopyrightFred Espenak (MrEclipse.com)Explanation: We live in an era where total solar eclipses are possible because at times the apparent size of the Moon can just cover the disk of the Sun. But the Moon is slowly moving away from planet Earth. Its distance is measured to increase about 1.5 inches (3.8 centimeters) per year due to tidal friction. So there will come a time, about 600 million years from now, when the Moon is far enough away that the lunar disk will be too small to ever completely cover the Sun. Then, at best only annular eclipses, a ring of fire surrounding the silhouetted disk of the too small Moon, will be seen from the surface of our fair planet. Of course the Moon was slightly closer and loomed a little larger 100 million years ago. So during the age of the dinosaurs there were more frequent total eclipses of the Sun. In front of the Tate Geological Museum at Casper College in Wyoming, this dinosaur statue posed with a modern total eclipse, though. An automated camera was placed under him to shoot his portrait during the Great American Eclipse of August 21.

 

From: https://apod.nasa.gov/apod/ap171007.html

Astronomy Picture of the Day – Global Aurora at Mars

See Explanation.  Clicking on the picture will download
 the highest resolution version available.Global Aurora at Mars 
Image Credit: MAVENLASP, University of ColoradoNASAExplanation: A strong solar event last month triggered intense global aurora at Mars. Before (left) and during (right) the solar storm, these projections show the sudden increase in ultraviolet emission from martian aurora, more than 25 times brighter than auroral emission previously detected by the orbiting MAVEN spacecraft. With a sunlit crescent toward the right, data from MAVEN’s ultraviolet imaging spectrograph is projected in purple hues on the right side of Mars globes simulated to match the observation dates and times. On Mars, solar storms can result in planet-wide aurora because, unlike Earth, the Red Planet isn’t protected by a strong global magnetic field that can funnel energetic charged particles toward the poles. For all those on the planet’s surface during the solar storm, dangerous radiation levels were double any previously measured by the Curiosity rover. MAVEN is studying whether Mars lost its atmosphere due to its lack of a global magnetic field.

 

Source: https://apod.nasa.gov/apod/ap171006.html